
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

ACETYLFERROCENE-5-PHENYL-1,3-OXAZOL-2-YLCARBONYLHYDRAZONE AND ITS COMPLEXES

Li Qing-Shan^a; Sun Yan-Jun^a; Li Xiao-Ming^a; Ma Yong-Xiang^a ^a Department of Chemistry, Lanzhou University, Lanzhou, P.R. China

To cite this Article Qing-Shan, Li , Yan-Jun, Sun , Xiao-Ming, Li and Yong-Xiang, Ma(1996) 'ACETYLFERROCENE-5-PHENYL-1,3-OXAZOL-2-YLCARBONYLHYDRAZONE AND ITS COMPLEXES', Journal of Coordination Chemistry, 40: 4, 319 – 326

To link to this Article: DOI: 10.1080/00958979608024536 URL: http://dx.doi.org/10.1080/00958979608024536

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1996, Vol. 40, pp. 319-326 Reprints available directly from the publisher Photocopying permitted by license only

ACETYLFERROCENE-5-PHENYL-1,3-OXAZOL-2-YLCARBONYLHYDRAZONE AND ITS COMPLEXES

LI QING-SHAN, SUN YAN-JUN, LI XIAO-MING and MA YONG-XIANG*

Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

(Received 23 May 1996; In final form 18 July 1996)

A new heterocyclic ferrocene derivative, acetylferrocene-5-phenyl-1,3-oxazol-2-ylcarbonylhydrazone (HAfoh) and its transition metal complexes, $[M (Afoh)(OAc)] \cdot nH_2O (M = Cu^{2+}, Ni^{2+}, Co^{2+}, Zn^{2+}, Cd^{2+}, Hg^{2+}, Pb^{2+}, Mn^{2+} \text{ or } UO_2^{-2+})$ were prepared by reacting HAfoh with metal acetates. HAfoh appears to act as a bidentate, coordinating to the metal through the azomethine nitrogen and enolic oxygen atoms. The OAc⁻ ion coordinates to the metals as a bidentate ligand.

Keywords: aroylhydrazone; bidentate ligand; complexes; acetate

INTRODUCTION

Numerous complexes of aroylhydrazones containing ferrocenyl groups have been studied,¹⁻⁴ owing to the rich coordination chemistry of aroylhydrazones and the fact that azomethine ligands are models for metal-ligand binding sites in several enzymes.⁵⁻⁶ Many reports⁷⁻⁸ have shown that the replacement of an aromatic group in penicillins and cephalosporins by the ferrocenyl group improves their antibiotic activity. Considering the importance of the oxazole group in pharmacological and biological areas,⁹⁻¹⁰ in this paper we report the synthesis and properties of complexes of a hydrazone containing substituted oxazole and ferrocene groups, acetylferrocene-5-phenyl-1,3-oxazol-2ylcarbonylhydrazone (HAfoh).

^{*} Author for correspondence.

EXPERIMENTAL

Materials

All solvents were dried and distilled before use. Acetylferrocene was obtained by a literature method.¹¹ Ethyl oxalyl chloride was prepared according to the literature.¹² Metal(II) acetates and other chemicals were of analytical grade.

Preparation of HAfoh

A solution of α -aminoacetophenone (0.1 mol) and ClCOCO₂Et (0.12 mol) in anhydrous benzene (50 cm³) was refluxed until no HCl gas was evolved. The resulting solution was washed with water, 10% NaHCO₃ and water in succession, then dried over anhydrous Na₂SO₄. After benzene was distilled off, solid PhCOCH₂NHCOCO₂Et was obtained, yield 78%. PhCOCH₂NHCOCO₂Et (0.1 mol) and POCl₃ (40 cm³) in anhydrous benzene (80 cm³) was refluxed until no more HCl was evolved and the solution was treated as above, giving Ph(C₃HNO)CO₂Et in 70% yield. A solution of Ph(C₃HNO)CO₂Et and NH₂NH₂·H₂O (1:1.2 mol) in EtOH was refluxed for 4–6 h to give 90% of 5-phenyl-2-oxazolecarbonylhydrazine.¹³

HAfoh was prepared by refluxing a mixture of acetylferrocene and $Ph(C_3HNO)CONHNH_2$ (mol ratio = 1:1) in anhydrous EtOH for 8 h, in the presence of several drops of glacial AcOH. The yellow precipitate was filtered off, washed with EtOH and recrystallized from benzene and DMF (2:1, v/v). Yield 82%, m.p. 142–144°C.

Preparation of complexes

A solution of HAfoh (0.5 mmol) in absolute EtOH (20 cm³) was added to a solution of 0.5 mmol of $M(OAc)_2 \cdot nH_2O$ (M = Cu, Ni, Co, Zn, Cd, Hg, Pb, Mn and UO₂) in EtOH (10 cm³) and the mixture was refluxed for 8–10 h. The product was separated by filteration, washed with acetone, followed by Et₂O, and dried *in vacuo*. Yields > 78%.

Measurements

IR spectra were recorded on a Nicolet-5DX spectrophotometer using KBr discs in the range 4000-400 cm⁻¹. ¹H NMR spectra were measured with a Varian FT—80A spectrometer at 80 MHz using CDCl₃ and DMSO- d_6 as solvents and TMS as internal standard. Electronic spectra were recorded on a Shimadzu

260 spectrophotometer, using DMF solution in the range 190–700 nm. Conductivity measurements were performed with a DDS—II A conductometer, made in the Shanghai Second Apparatus Factory, using DMF as solvent at room temperature. Thermal studies were carried out with a Du Pont 1090 thermal analyser at room temperature to 800°C for TGA under a nitrogen atmosphere.

RESULTS AND DISCUSSION

HAfoh is insoluble in low polarity solvents such as alkanes and ether, but soluble in methanol, ethanol, chloroform, acetone, benzene, DMF and DMSO. All of the complexes are insoluble in water and common organic solvents, but sparingly soluble in DMF and DMSO. Elemental analyses and some physical properties of HAfoh and its complexes are given in Table I. TGA data, show that water is lost between 20–100°C, being lattice water. HAfoh coordinates to metal ions through azomethine nitrogen and enolic oxygen atoms after deprotonation. The ligand and acetate both bond to the metal as bidentates to give $[M(Afoh) \cdot OAc] \cdot nH_2O$ in high yield.

IR spectra

Important IR data of free HAfoh and its complexes are shown in Table II. In addition to the bands given in the table, characteristic bands of ferrocenyl groups appear at 3063, 1484, 1106, 825 and 489 cm⁻¹, respectively.¹⁴ No ν (O—H) band is observed. These results show that the acylhydrazonyl group exists in the keto form in the solid state. IR spectra of the complexes show significant changes compared with that of the ligand. Characteristic bands ν (N—H), ν (C—O) and δ (N—H) at 3220, 1692 and 1532 cm⁻¹, respectively, disappear and new bands are observed at *ca* 1604 and 1265 cm⁻¹ which can be attributed to stretching vibrations of C=N and C—O groups.¹⁴ The medium intensity band due to ν (N—N) at *ca* 940 cm⁻¹ in the complexes is slightly shifted to higher wavenumbers compared with free HAfoh. These changes suggests that the azomethine nitrogen and deprotonated enolic oxygen coordinate to the metal ion.¹⁻⁴ The ν (O—H) stretch of water appears above 3300 cm⁻¹ in complexes (1), (3), (5) and (6) in agreement with results of elemental analyses.

New bands in the spectra of the complexes at *ca* 1410 and 1520 cm⁻¹ should be assigned to $v_s(O--C--O)$ and $v_s(O--C--O)$, respectively. It is noted that the difference, Δv , between $v_{as}(O--C--O)$ and $v_{as}(O--C--O)$ is important, because these frequencies can be used for characterizing the bonding type between metal and carboxyl.¹⁴⁻¹⁷ When Δv is smaller than 200 cm⁻¹, the carboxyl group is

	Compound			Yield	m.p.	4	Found (Calcd.) %		•	٧a
			Colour	(%)	(C)	J	Н	N	$(\Omega^{-l}cn)$	$(\Omega^{-l}cm^2mol^{-l})$
	Hafoh		Yellow	82	142-144	63.9(63.9)	4.6(4.6)	10.2(10.2)	2	2.18
	[Cu(Afoh) · OAc] · H ₂ O	Ac] · H,O	Brown	85	208-210	52.5(52.1)	3.9(4.2)	7.7 (7.6)	1	.92
(7)	Vi(Afoh) · OAc	1	Yellow	88	240(dec.)	54.5(54.4)	4.2(4.0)	8.1(7.9)	-	.33
	Co(Afoh) · O/	Ac]H,O	Red	87	235(dec.)	52.8(52.6)	4.5(4.2)	7.9(7.7)	0	2.02
	Zn(Afoh) · OAc	4	Red	78	220-222	54.0(53.7)	4.2(3.9)	8.0 (7.8)	ŝ	6.17
	Cd(Afoh) · O/	Ac] · 2H ₂ O	Red	80	240-242	47.0(46.5)	4.1(4.1)	7.1(6.8)	7	2.87
	Hg(Afoh) · O/	Ac] · 2H,O	Pale Red	84	256-258	41.0(40.7)	3.7(3.6)	6.4(5.9)	1	.56
	JO ₂ (Afoh) · O	Ac -	Brown	84	282(dec.)	39.3(38.9)	3.1(2.9)	5.7(5.7)	24	1.2
	² b(Åfoh) · OA	ں د	Red	80	198-200	43.0(42.5)	3.5(3.1)	6.4(6.2)	ŝ	3.48
	Mn(Afoh) · OA	DAc	Yellow	88	308-310	55.1(54.8)	4.2(4.0)	7.6(8.0)	1	.22
				CAN TH			Oxazole		Acetate	
Compound	(H)h	(H - N)n	n(c=0)	(H—N)0	<u><u>dw</u><u>H</u>) <u>u</u>(c=<u>w-</u><u>w</u>=c) <u>u</u>(c-<u>n</u>)</u>		u(C0)	$v_{s}(CO_{2})$	$v_{as}(CO_2)$	Δv
HAfoh		3320m	1692vs	1532vs			1217s			
<u> </u>	3395w, sh				1603vs	1268s	1226s	1418s	1520s	102
-	ŀ				1609vs		1220s	1411s	1523s	112
	3408w, sh				1608vs		1215s	1411s	1523s	112
÷	4				1608vs		1223s	1416s	1520s	5
(2)	3425w, sh				1604vs		1216s	1410s	1521s	111
	3436w, sh				1623vs		1220s	1410s	1517s	107
					1608vs		1215s	1415s	1522s	107
(0)					1604vs		1215c	1410s	1518s	9

(5)
(9)
^a Vs = very strong: s = strong; m = medium; w = weak; sh = shoulder.

105

1521s

1416s

1213s

1263s

1607vs

Downloaded At: 15:52 23 January 2011

LI QING-SHAN et al.

Compound	NH	Oxazole ring	$C_5H_{4^-}$	C_5H_5	C_6H_5	CH ₃ CO ₂ -	$-CH_3$
HAfoh	10.98 (s,1H)	4.40 7.48 (s,1H)	(m,2H) 4.70 (m,2H)	4.18 (s,5H)	7.40–7.75 (m,5H)		2.30 (s,3H)
[Cd(Afoh) · OAc]	2H ₂ O	7.52 (s,1H)	4.49 (m,2H) 4.75 (m,2H)	4.17 (s,5H)	7.44–7.80 (m,5H)	1.81 (s,3H)	2.37 (s,3H)

TABLE III ¹H NMR data for free HAfoh and $[Cd(Afoh) \cdot OAc] \cdot 2H_2O(\delta, ppm)^a$

 ${}^{a}S = singlet; m = multiplet$

coordinated to central ion as a bidentate, but when Δv is greater than 200 cm⁻¹, it acts as a unidentate.¹⁵ In the complexes, Δv is about 102–112 cm⁻¹, so the carboxyl coordinates as a bidentate.

¹H NMR spectra

¹H NMR data for free HAfoh (in CDCl₃) and complex (5) (in DMSO- d_6) are listed in Table III. In the free ligand, the proton signal of the oxazole ring is overlapped with the multiple peaks of the phenyl protons, but a sharp singlet at 7.48 ppm.¹⁸ The NH signal of the HAfoh at 10.98 ppm disappears on deuteration with D₂O, but in the complexes is not observed, *i.e.*, the ligand is enolized and coordinated to the metal ion. The proton signal of CH₃ in acetate appears at 1.81 ppm (s, 3H). All signals are shifted downfield by 0.01–0.09 ppm in the complexes.

Electronic spectra

Electronic spectroscopic data for free HAfoh and its complexes are listed in Table IV. Band I and band II correspond to the *B* band (π - π^* transition) of cyclopentadienyl ring and the d—MO^{*} transition between the iron atom and cyclopentadienyl,^{19–20} respectively. Band III is assigned to the *K* band (π - π^* transition) of the compounds.²¹ Compared to the ligand, bands II and III exhibit significant bathochromic shifts of 5–23 and 2–20 cm, respectively. It is possible that the *d*- or *f*-orbital of the metal atom and p-orbital of the ligand overlap to form a large conjugated system after enolization and complexing. The conjugated system makes the energy level difference between the π and π^* orbitals decrease. These factors lead to a greater bathochromic shift of bands II and III in the complexes. A broad and weak absorption at *ca* 410–450 nm is assigned to a

C			$\lambda(nm)$	
Compound	I	II	111	IV
HAfoh	262m	285m,sh	316s	444w,br
(1)	265m	305s	333s	414w,br
(2)	265m	293s	335s	455w,br
(3)	264rn	291s	331s	456w,br
(4)	264m	289s	336s	429w,br
(5)	263m	290s	335s	442w,br
(6)	265m	290s	331s,sh	427w,br
(7)	264m	308s		447w,br
(8)	264m	304s		440w,br
(9)	264m	294s	318s	451w,br

TABLE IV Electronic spectroscopy data for free HAfoh and its complexes^a

^aSpectra recorded in DMF; s = strong; m = medium; w = weak; sh = shoulder; br = broad.

transition of the 3*d* electrons on iron to either non-bonding or antibonding orbitals of the cyclopentadienyl ring.¹⁹⁻²⁰

Thermal analyses

TGA data for free HAfoh and complexes (2) and (3) are listed in Table V. TGA data for complex (3) show that the molecular water is lost below 100° C, suggesting that the water is in the lattice. Data are consistent with the proposed formula of the complexes. The complexes show significantly higher thermal stabilities than free HAfoh.

Molar conductivities

Molar conductivity data for free HAfoh and the complexes are given in Table I. The data show that HAfoh and the complexes are all non-electrolytes.²² This is consistent with coordination of bidentate acetate groups, as suggested by the spectroscopic data.

Analytical data, IR and ¹H NMR spectra show that the acetate ion also participates in coordination to the metal ions as a bidentate ligand along with HAfoh, as has been confirmed by previous work.²³⁻²⁶ We recently found that anologous ligands, *e.g.* formylferrocene-5-phenyl-1,3-oxazol-2-ylcarbonyl-hydrazone and 1,1'-diacetylferrocene-*bis*(5-phenyl-1,3-oxazol-2-ylcarbonyl) hydrazone react with transition metal(II) acetates to form complexes in the same manner; the acetate also acts as a bidentate ligand. A plausible structure for our complexes is shown in Figure 1.

2011
January
23
15:52
At:
Downloaded

Compound	$D.T. (^{\circ}C)$	Leaving group	Weight loss (%) ^a
HAfoh	142-143 (m.p.)		
	180-280		12(14)
	280-410	oxazole ring and carbonyl	18(17)
	410-470	phenyl and two cyclopentadienyl rings	50(50)
	up to 800	residual Fe_2O_3	20(19)
Ni(Afoh) · OAc	245–295	oxazole ring,OCNNCMe and AcO	$32(32)^{b}$
	295-380	phenyl and two cyclopentadienyl rings	39(39)
	up to 800	residual Fe_2O_3 and NiO (1:2)	29(29)
[Co(Afoh) · OAc] · H ₂ O	20-100	H ₂ O	3(3)
	240-340	oxazole ring, -0C==NN==CCH ₃ and AcO ⁻	29(31) ^b
	340-420	phenyl and two cyclopentadienyl rings	39(38)
	up to 800	residual Fe_2O_3 and CoO (1 : 2)	29(28)

^aCalculated values are given in parentheses.^bSome oxygen is transformed to metal oxide.

325

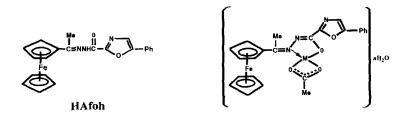


FIGURE 1 Suggested structure for HAfoh and its complexes, n=0-2.

Acknowledgments

This research has been supported by the National Science Foundation of China.

References

- [1] Y.X. Ma and G. Zhao, Polyhedron, 7, 1101 (1988).
- [2] G. Zhao and Y.X. Ma, Polyhedron, 10, 2185 (1991).
- [3] Y.X. Ma, Z.Z. Zeng, Y. Ma and G. Zhao, Inorg. Chim. Acta, 165, 185 (1989).
- [4] Y.C. Shi, Q.B. Song, X.L. Wu and Y.X. Ma, Polyhedron, 13, 2101 (1994).
- [5] S.G. Clarkson and F. Basolo, Inorg. Chem., 2, 1528 (1973).
- [6] B.B. Wayland, F.F.A. Elmageed and L.F. Mohns, Inorg. Chem., 14, 1456 (1975).
- [7] E.I. Edwards, R. Epton and G. Marr, J. Organomet. Chem., 85, C23 (1975).
- [8] B.W. Rockett and G. Marr, J. Organomet. Chem., 123, 205 (1976).
- [9] T. Tanimoto, H. Fukuta, J. Kawamura, M. Nakao, U. Shimada, A. Yamada and C. Tanaka, Chem. Pharm. Bull., 32, 1032 (1984).
- [10] K.M. Patel and J.E. Powell, U. S. Patent, 4, 853 027 (1989); C.A., 112, 76939q (1990).
- [11] M. Rosemblum and R.B. Woodward, J. Am. Chem. Soc., 80, 5443 (1958).
- [12] G.P. Chernyuk, V.G. Poludnernko and A.L. Belferman, Zh. Prikl. Khim. (Leningrad), 55, 2058 (1982).
- [13] C. Tanaka and N. Saito, J. Pharm. Soc. Japan, 82, 141 (1962).
- [14] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edn., (John Wiley, New York, 1978).
- [15] G.B. Deacon, R. Phillips, Coord. Chem. Rev., 33, 227 (1980).
- [16] Z.L. Deng, J. Shi, Z.H. Jiang, D.Z. Liao, S.P. Yan and G.L. Wang, Polyhedron, 11, 885 (1992).
- [17] A. Culter, M. Raja and A. Todaro, Inorg. Chem., 26, 2877 (1987).
- [18] M.E. Alonso and P. Jano, J. Heterocyclic Chem., 17, 721 (1980).
- [19] D.R. Scott and R.S. Becker, J. Chem. Phys., 35, 516 (1961).
- [20] S.I. Goldberg, D.W. Wayo and J.A. Afalford, J. Org. Chem., 28, 1708 (1963).
- [21] M. Rosenblum, J.O. Sauten and W.G. Jowells, J. Am. Chem. Soc., 85, 1450 (1963).
- [22] W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- [23] Y.X. Ma and C.L. Ma, Chem. Paper, 43, 761 (1989).
- [24] Y.X. Ma, Z.Z. Zeng, G.S. Huang and C.L. Ma, Bull. Soc. Chim. Belg., 99, 231 (1990).
- [25] Y.X. Ma, G.S. Huang, Z.Q. Li and X.L. Wu, Synth. React. Inorg. Met-Org. Chem., 21, 859 (1991).
- [26] Y.X. Ma, Y. Zhu, X. Wang and C.L. Ma, Polyhedron, 8, 929 (1989).